The Markovian regime-switching risk model with a threshold dividend strategy
Yi Lu and
Shuanming Li
Insurance: Mathematics and Economics, 2009, vol. 44, issue 2, 296-303
Abstract:
In this paper, we study a regime-switching risk model with a threshold dividend strategy, in which the rate for the Poisson claim arrivals and the distribution of the claim amounts are driven by an underlying (external) Markov jump process. The purpose of this paper is to study the unified Gerber-Shiu discounted penalty function and the moments of the total dividend payments until ruin. We adopt an approach which is akin to the one used in [Lin, X.S., Pavlova, K.P., 2006. The compound Poisson risk model with a threshold dividend strategy. Insu.: Math. and Econ. 38, 57-80] to extend the results for the classical risk model with a threshold dividend strategy to our model. The matrix form of systems of integro-differential equations is presented and the analytical solutions to these systems are derived. Finally, numerical illustrations with exponential claim amounts are also given.
Keywords: C02; Gerber-Shiu; function; Integro-differential; equation; Present; value; of; dividend; payments; Regime-switching; model; Threshold; dividend; strategy (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00054-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:44:y:2009:i:2:p:296-303
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().