EconPapers    
Economics at your fingertips  
 

On a dual model with a dividend threshold

Andrew C.Y. Ng

Insurance: Mathematics and Economics, 2009, vol. 44, issue 2, 315-324

Abstract: In insurance mathematics, a compound Poisson model is often used to describe the aggregate claims of the surplus process. In this paper, we consider the dual of the compound Poisson model under a threshold dividend strategy. We derive a set of two integro-differential equations satisfied by the expected total discounted dividends until ruin and show how the equations can be solved by using only one of the two integro-differential equations. The cases where profits follow an exponential or a mixture of exponential distributions are then solved and the discussion for the case of a general profit distribution follows by the use of Laplace transforms. We illustrate how the optimal threshold level that maximizes the expected total discounted dividends until ruin can be obtained, and finally we generalize the results to the case where the surplus process is a more general skip-free downwards Lévy process.

Keywords: Ruin; theory; Dual; risk; model; Threshold; strategy; Optimal; threshold; problem (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00167-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:44:y:2009:i:2:p:315-324

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:44:y:2009:i:2:p:315-324