A jump-diffusion model for option pricing under fuzzy environments
Weidong Xu,
Chongfeng Wu,
Weijun Xu and
Hongyi Li ()
Insurance: Mathematics and Economics, 2009, vol. 44, issue 3, 337-344
Abstract:
Owing to fluctuations in the financial markets from time to time, the rate [lambda] of Poisson process and jump sequence {Vi} in the Merton's normal jump-diffusion model cannot be expected in a precise sense. Therefore, the fuzzy set theory proposed by Zadeh [Zadeh, L.A., 1965. Fuzzy sets. Inform. Control 8, 338-353] and the fuzzy random variable introduced by Kwakernaak [Kwakernaak, H., 1978. Fuzzy random variables I: Definitions and theorems. Inform. Sci. 15, 1-29] and Puri and Ralescu [Puri, M.L., Ralescu, D.A., 1986. Fuzzy random variables. J. Math. Anal. Appl. 114, 409-422] may be useful for modeling this kind of imprecise problem. In this paper, probability is applied to characterize the uncertainty as to whether jumps occur or not, and what the amplitudes are, while fuzziness is applied to characterize the uncertainty related to the exact number of jump times and the jump amplitudes, due to a lack of knowledge regarding financial markets. This paper presents a fuzzy normal jump-diffusion model for European option pricing, with uncertainty of both randomness and fuzziness in the jumps, which is a reasonable and a natural extension of the Merton [Merton, R.C., 1976. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125-144] normal jump-diffusion model. Based on the crisp weighted possibilistic mean values of the fuzzy variables in fuzzy normal jump-diffusion model, we also obtain the crisp weighted possibilistic mean normal jump-diffusion model. Numerical analysis shows that the fuzzy normal jump-diffusion model and the crisp weighted possibilistic mean normal jump-diffusion model proposed in this paper are reasonable, and can be taken as reference pricing tools for financial investors.
Keywords: Fuzzy; numbers; Fuzzy; random; variable; European; option; pricing; Fuzzy; jump-diffusion; model (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00120-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:44:y:2009:i:3:p:337-344
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().