EconPapers    
Economics at your fingertips  
 

Bounds and approximations for sums of dependent log-elliptical random variables

Emiliano Valdez (), Jan Dhaene, Mateusz Maj and Steven Vanduffel ()

Insurance: Mathematics and Economics, 2009, vol. 44, issue 3, 385-397

Abstract: Dhaene, Denuit, Goovaerts, Kaas and Vyncke [Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Vyncke, D., 2002a. The concept of comonotonicity in actuarial science and finance: theory. Insurance Math. Econom. 31 (1), 3-33; Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Vyncke, D., 2002b. The concept of comonotonicity in actuarial science and finance: Applications. Insurance Math. Econom. 31 (2), 133-161] have studied convex bounds for a sum of dependent random variables and applied these to sums of log-normal random variables. In particular, they have shown how these convex bounds can be used to derive closed-form approximations for several of the risk measures of such a sum. In this paper we investigate to which extent their general results on convex bounds can also be applied to sums of log-elliptical random variables which incorporate sums of log-normals as a special case. Firstly, we show that unlike the log-normal case, for general sums of log-ellipticals the convex lower bound does no longer result in closed-form approximations for the different risk measures. Secondly, we demonstrate how instead the weaker stop-loss order can be used to derive such closed-form approximations. We also present numerical examples to show the accuracy of the proposed approximations.

Keywords: Comonotonicity; Bounds; Elliptical; distributions; Log-elliptical; distributions (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00166-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:44:y:2009:i:3:p:385-397

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:insuma:v:44:y:2009:i:3:p:385-397