Efficient deterministic numerical simulation of stochastic asset-liability management models in life insurance
Thomas Gerstner,
Michael Griebel and
Markus Holtz
Insurance: Mathematics and Economics, 2009, vol. 44, issue 3, 434-446
Abstract:
New regulations, stronger competitions and more volatile capital markets have increased the demand for stochastic asset-liability management (ALM) models for insurance companies in recent years. The numerical simulation of such models is usually performed by Monte Carlo methods which suffer from a slow and erratic convergence, though. As alternatives to Monte Carlo simulation, we propose and investigate in this article the use of deterministic integration schemes, such as quasi-Monte Carlo and sparse grid quadrature methods. Numerical experiments with different ALM models for portfolios of participating life insurance products demonstrate that these deterministic methods often converge faster, are less erratic and produce more accurate results than Monte Carlo simulation even for small sample sizes and complex models if the methods are combined with adaptivity and dimension reduction techniques. In addition, we show by an analysis of variance (ANOVA) that ALM problems are often of very low effective dimension which provides a theoretical explanation for the success of the deterministic quadrature methods.
Keywords: Numerical; integration; Quasi-Monte; Carlo; Sparse; grids; Effective; dimension (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00184-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:44:y:2009:i:3:p:434-446
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().