Upper comonotonicity
Ka Chun Cheung
Insurance: Mathematics and Economics, 2009, vol. 45, issue 1, 35-40
Abstract:
In this article, we study a new notion called upper comonotonicity, which is a generalization of the classical notion of comonotonicity. A random vector is upper-comonotonic if its components are moving in the same direction simultaneously when their values are greater than some thresholds. We provide a characterization of this new notion in terms of both the joint distribution function and the underlying copula. The copula characterization allows us to study the coefficient of upper tail dependence as well as the distributional representation of an upper-comonotonic random vector. As an application to financial economics, we show that the several commonly used risk measures, like the Value-at-Risk, the Tail Value-at-Risk, and the expected shortfall, are additive, not only for sum of comonotonic risks, but also for sum of upper-comonotonic risks, provided that the level of probability is greater than a certain threshold.
Keywords: Comonotonicity; Upper; comonotonicity; Risk; measure; Copula; Tail; dependence (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00032-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:45:y:2009:i:1:p:35-40
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().