Optimal investment and reinsurance of an insurer with model uncertainty
Xin Zhang and
Tak Kuen Siu
Insurance: Mathematics and Economics, 2009, vol. 45, issue 1, 81-88
Abstract:
We introduce a novel approach to optimal investment-reinsurance problems of an insurance company facing model uncertainty via a game theoretic approach. The insurance company invests in a capital market index whose dynamics follow a geometric Brownian motion. The risk process of the company is governed by either a compound Poisson process or its diffusion approximation. The company can also transfer a certain proportion of the insurance risk to a reinsurance company by purchasing reinsurance. The optimal investment-reinsurance problems with model uncertainty are formulated as two-player, zero-sum, stochastic differential games between the insurance company and the market. We provide verification theorems for the Hamilton-Jacobi-Bellman-Isaacs (HJBI) solutions to the optimal investment-reinsurance problems and derive closed-form solutions to the problems.
Keywords: Optimal; investment; Proportional; reinsurance; Model; uncertainty; Stochastic; differential; game; Exponential; utility; Penalty; of; ruin; HJBI; equations (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00039-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:45:y:2009:i:1:p:81-88
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().