Estimating copula densities, using model selection techniques
Wilbert C.M. Kallenberg
Insurance: Mathematics and Economics, 2009, vol. 45, issue 2, 209-223
Abstract:
Recently a new way of modeling dependence has been introduced considering a sequence of parametric copula models, covering more and more dependency aspects and thus giving a closer approximation to the true copula density. The method uses contamination families based on Legendre polynomials. It has been shown that in general after a few steps accurate approximations are obtained. In this paper selection of the adequate number of steps is considered, and estimation of the unknown parameters within the chosen contamination family is established, thus obtaining an estimator of the unknown copula density. There should be a balance between the complexity of the model and the number of parameters to be estimated. High complexity gives a low model error, but a large stochastic or estimation error, while a very simple model gives a small stochastic error, but a large model error. Techniques from model selection are applied, thus letting the data tell us which aspects are important enough to capture into the model. Natural and simple estimators of the involved Fourier coefficients complete the procedure. Theoretical results show that the expected quadratic error is reduced by the selection rule to the same order of magnitude as in a classical parametric problem. The method is applied on a real data set, illustrating that the new method describes the data set very well: the error involved in the classical Gaussian copula density is reduced with no fewer than 50%.
Keywords: Copula; density; Model; selection; Penalty; function; Legendre; polynomials; Contamination; family; Nonlinear; correlation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00064-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:45:y:2009:i:2:p:209-223
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().