Quantile hedging for guaranteed minimum death benefits
Yumin Wang
Insurance: Mathematics and Economics, 2009, vol. 45, issue 3, 449-458
Abstract:
Quantile hedging for contingent claims is an active topic of research in mathematical finance. It plays a role in incomplete markets when perfect hedging is not possible. Guaranteed minimum death benefits (GMDBs) are present in many variable annuity contracts, and act as a form of portfolio insurance. They cannot be perfectly hedged due to the mortality component, except in the limit as the number of contracts becomes infinitely large. In this article, we apply ideas from finance to derive quantile hedges for these products under various assumptions.
Keywords: Quantile; hedging; Variable; annuities; GMDBs; Stochastic; control (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00125-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:45:y:2009:i:3:p:449-458
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().