Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method
Aysen Apaydin and
Furkan Baser
Insurance: Mathematics and Economics, 2010, vol. 47, issue 2, 113-122
Abstract:
Claims reserving is obviously necessary for representing future obligations of an insurance company and selection of an accurate method is a major component of the overall claims reserving process. However, the wide range of unquantifiable factors which increase the uncertainty should be considered when using any method to estimate the amount of outstanding claims based on past data. Unlike traditional methods in claims analysis, fuzzy set approaches can tolerate imprecision and uncertainty without loss of performance and effectiveness. In this paper, hybrid fuzzy least-squares regression, which is proposed by Chang (2001), is used to predict future claim costs by utilizing the concept of a geometric separation method. We use probabilistic confidence limits for designing triangular fuzzy numbers. Thus, it allows us to reflect variability measures contained in a data set in the prediction of future claim costs. We also propose weighted functions of fuzzy numbers as a defuzzification procedure in order to transform estimated fuzzy claim costs into a crisp real equivalent.
Keywords: Insurance; Outstanding; claim; reserves; Geometric; separation; method; Fuzzy; numbers; Hybrid; fuzzy; regression; analysis; Weighted; functions; of; fuzzy; numbers (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00078-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:47:y:2010:i:2:p:113-122
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().