Comonotonic convex upper bound and majorization
Ka Chun Cheung
Insurance: Mathematics and Economics, 2010, vol. 47, issue 2, 154-158
Abstract:
When the dependence structure among several risks is unknown, it is common in the actuarial literature to study the worst dependence structure that gives rise to the riskiest aggregate loss. A central result is that the aggregate loss is the riskiest with respect to convex order when the underlying risks are comonotonic. Many proofs were given before. The objective of this article is to present a new proof using the notions of decreasing rearrangement and the majorization theorem, and give clear explanation of the relation between convex order, the theory of majorization and comonotonicity.
Keywords: Convex; order; Comonotonicity; Decreasing; rearrangement; Majorization (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00070-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:47:y:2010:i:2:p:154-158
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().