EconPapers    
Economics at your fingertips  
 

Comonotonic convex upper bound and majorization

Ka Chun Cheung

Insurance: Mathematics and Economics, 2010, vol. 47, issue 2, 154-158

Abstract: When the dependence structure among several risks is unknown, it is common in the actuarial literature to study the worst dependence structure that gives rise to the riskiest aggregate loss. A central result is that the aggregate loss is the riskiest with respect to convex order when the underlying risks are comonotonic. Many proofs were given before. The objective of this article is to present a new proof using the notions of decreasing rearrangement and the majorization theorem, and give clear explanation of the relation between convex order, the theory of majorization and comonotonicity.

Keywords: Convex; order; Comonotonicity; Decreasing; rearrangement; Majorization (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00070-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:47:y:2010:i:2:p:154-158

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:154-158