Upper comonotonicity and convex upper bounds for sums of random variables
Jing Dong,
Ka Chun Cheung and
Hailiang Yang
Insurance: Mathematics and Economics, 2010, vol. 47, issue 2, 159-166
Abstract:
It is well-known that if a random vector with given marginal distributions is comonotonic, it has the largest sum with respect to convex order. However, replacing the (unknown) copula by the comonotonic copula will in most cases not reflect reality well. For instance, in an insurance context we may have partial information about the dependence structure of different risks in the lower tail. In this paper, we extend the aforementioned result, using the concept of upper comonotonicity, to the case where the dependence structure of a random vector in the lower tail is already known. Since upper comonotonic random vectors have comonotonic behavior in the upper tail, we are able to extend several well-known results of comonotonicity to upper comonotonicity. As an application, we construct different increasing convex upper bounds for sums of random variables and compare these bounds in terms of increasing convex order.
Keywords: Comonotonicity; Upper; comonotonicity; Tail; dependence; Convex; order (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00069-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:47:y:2010:i:2:p:159-166
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().