Distributional analysis of a generalization of the Polya process
Gordon E. Willmot
Insurance: Mathematics and Economics, 2010, vol. 47, issue 3, 423-427
Abstract:
A nonhomogeneous birth process generalizing the Polya process is analyzed, and the distribution of the transition probabilities is shown to be the convolution of a negative binomial distribution and a compound Poisson distribution, whose secondary distribution is a mixture of zero-truncated geometric distributions. A simplified form of the secondary distribution is obtained when the transition intensities have a particular structure, and may sometimes be expressed in terms of Stirling numbers and special functions such as the incomplete gamma function, the incomplete beta function, and the exponential integral. Conditions under which the compound Poisson form of the marginal distributions may be improved to a geometric mixture are also given.
Keywords: Nonhomogeneous; birth; process; Negative; binomial; distribution; Compound; Poisson; distribution; Geometric; distribution; Completely; monotone; Mixture; of; geometrics; Logarithmic; series; distribution; STER; distribution; Incomplete; gamma; function; Incomplete; beta; function; Exponential; integral; Stirling; numbers (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00101-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:47:y:2010:i:3:p:423-427
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().