On the DFR property of the compound geometric distribution with applications in risk theory
Georgios Psarrakos
Insurance: Mathematics and Economics, 2010, vol. 47, issue 3, 428-433
Abstract:
In 1988, Shanthikumar proved that the sum of a geometrically distributed number of i.i.d. DFR random variables is also DFR. In this paper, motivated by the inverse problem, we study monotonicity properties related to defective renewal equations, and obtain that if a compound geometric distribution is DFR, then the random variables of the sums are NWU (a class that contains DFR). Furthermore, we investigate some applications of risk theory and give a characterization of the exponential distribution.
Keywords: Compound; geometric; distribution; Renewal; equation; DFR; (IFR); NWU; (NBU); IMRL; (DMRL); NWUE; (NBUE); Ladder; height; Ruin; probability (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00104-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:47:y:2010:i:3:p:428-433
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().