The strictest common relaxation of a family of risk measures
Berend Roorda and
Johannes Schumacher
Insurance: Mathematics and Economics, 2011, vol. 48, issue 1, 29-34
Abstract:
Operations which form new risk measures from a collection of given (often simpler) risk measures have been used extensively in the literature. Examples include convex combination, convolution, and the worst-case operator. Here we study the risk measure that is constructed from a family of given risk measures by the best-case operator; that is, the newly constructed risk measure is defined as the one that is as restrictive as possible under the condition that it accepts all positions that are accepted under any of the risk measures from the family. In fact we define this operation for conditional risk measures, to allow a multiperiod setting. We show that the well-known VaR risk measure can be constructed from a family of conditional expectations by a combination that involves both worst-case and best-case operations. We provide an explicit description of the acceptance set of the conditional risk measure that is obtained as the strictest common relaxation of two given conditional risk measures.
Keywords: Nonconvex; risk; measures; Value; at; risk; Best-case; operator (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00100-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:48:y:2011:i:1:p:29-34
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().