Multivariate density estimation using dimension reducing information and tail flattening transformations
Tine Buch-Kromann,
Montserrat Guillen,
Oliver Linton and
Jens Perch Nielsen
Insurance: Mathematics and Economics, 2011, vol. 48, issue 1, 99-110
Abstract:
We propose a nonparametric multiplicative bias corrected transformation estimator designed for heavy tailed data. The multiplicative correction is based on prior knowledge and has a dimension reducing effect at the same time as the original dimension of the estimation problem is retained. Adding a tail flattening transformation improves the estimation significantly-particularly in the tail-and provides significant graphical advantages by allowing the density estimation to be visualized in a simple way. The combined method is demonstrated on a fire insurance data set and in a data-driven simulation study.
Keywords: Bias; reduction; Kernel; Multiplicative; correction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00108-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:48:y:2011:i:1:p:99-110
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().