An operator-based approach to the analysis of ruin-related quantities in jump diffusion risk models
Runhuan Feng
Insurance: Mathematics and Economics, 2011, vol. 48, issue 2, 304-313
Abstract:
Recent developments in ruin theory have seen the growing popularity of jump diffusion processes in modeling an insurer's assets and liabilities. Despite the variations of technique, the analysis of ruin-related quantities mostly relies on solutions to certain differential equations. In this paper, we propose in the context of Lévy-type jump diffusion risk models a solution method to a general class of ruin-related quantities. Then we present a novel operator-based approach to solving a particular type of integro-differential equations. Explicit expressions for resolvent densities for jump diffusion processes killed on exit below zero are obtained as by-products of this work.
Keywords: Jump; diffusion; process; Ruin; theory; Expected; discounted; penalty; at; ruin; Integro-differential; equation; Operator; calculus; Resolvent; density (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00146-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:48:y:2011:i:2:p:304-313
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().