On the threshold dividend strategy for a generalized jump-diffusion risk model
Yichun Chi and
X. Sheldon Lin
Insurance: Mathematics and Economics, 2011, vol. 48, issue 3, 326-337
Abstract:
In this paper, we generalize the Cramér-Lundberg risk model perturbed by diffusion to incorporate jumps due to surplus fluctuation and to relax the positive loading condition. Assuming that the surplus process has exponential upward and arbitrary downward jumps, we analyze the expected discounted penalty (EDP) function of Gerber and Shiu (1998) under the threshold dividend strategy. An integral equation for the EDP function is derived using the Wiener-Hopf factorization. As a result, an explicit analytical expression is obtained for the EDP function by solving the integral equation. Finally, phase-type downward jumps are considered and a matrix representation of the EDP function is presented.
Keywords: Jump-diffusion; risk; model; Expected; discounted; penalty; function; Threshold; dividend; strategy; Wiener-Hopf; factorization (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00133-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:48:y:2011:i:3:p:326-337
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().