Characterization of upper comonotonicity via tail convex order
Hee Seok Nam,
Qihe Tang and
Fan Yang
Insurance: Mathematics and Economics, 2011, vol. 48, issue 3, 368-373
Abstract:
In this paper, we show a characterization of upper comonotonicity via tail convex order. For any given marginal distributions, a maximal random vector with respect to tail convex order is proved to be upper comonotonic under suitable conditions. As an application, we consider the computation of the Haezendonck risk measure of the sum of upper comonotonic random variables with exponential marginal distributions.
Keywords: IM30; IE43; Comonotonicity; Upper; comonotonicity; Tail; convex; order; Haezendonck; risk; measures (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(11)00004-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:48:y:2011:i:3:p:368-373
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().