Convolutions of multivariate phase-type distributions
Jasmin Berdel and
Christian Hipp
Insurance: Mathematics and Economics, 2011, vol. 48, issue 3, 374-377
Abstract:
This paper is concerned with multivariate phase-type distributions introduced by Assaf et al. (1984). We show that the sum of two independent bivariate vectors each with a bivariate phase-type distribution is again bivariate phase-type and that this is no longer true for higher dimensions. Further, we show that the distribution of the sum over different components of a vector with multivariate phase-type distribution is not necessarily multivariate phase-type either, if the dimension of the components is two or larger.
Keywords: Phasetype; distributions; Dependence; models; Convolution (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(11)00011-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:48:y:2011:i:3:p:374-377
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().