Stochastic comparisons of distorted variability measures
Miguel A. Sordo and
Alfonso Suárez-Llorens
Insurance: Mathematics and Economics, 2011, vol. 49, issue 1, 11-17
Abstract:
In this paper, we consider the dispersive order and the excess wealth order to compare the variability of distorted distributions. We know from Sordo (2009a) that the excess wealth order can be characterized in terms of a class of variability measures associated to the tail conditional distribution which includes, as a particular measure, the tail variance. Given that the tail conditional distribution is a particular distorted distribution, a natural question is whether this result can be extended to include other classes of variability measures associated to general distorted distributions. As we show in this paper, the answer is yes, by focusing on distorted distributions associated to concave distortion functions. For distorted distributions associated to more general distortions, the characterizations are stated in terms of the stronger dispersive order.
Keywords: Excess; wealth; order; Dispersive; order; Distorted; distributions; Distortions; Tail; variance (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668711000217
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:49:y:2011:i:1:p:11-17
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().