EconPapers    
Economics at your fingertips  
 

Bias-reduced estimators for bivariate tail modelling

J. Beirlant, G. Dierckx and A. Guillou

Insurance: Mathematics and Economics, 2011, vol. 49, issue 1, 18-26

Abstract: Ledford and Tawn (1997) introduced a flexible bivariate tail model based on the coefficient of tail dependence and on the dependence of the extreme values of the random variables. In this paper, we extend the concept by specifying the slowly varying part of the model as done by Hall (1982) with the univariate case. Based on Beirlant et al. (2009), we propose a bias-reduced estimator for the coefficient of tail dependence and for the estimation of small tail probabilities. We discuss the properties of these estimators via simulations and a real-life example. Furthermore, we discuss some theoretical asymptotic aspects of this approach.

Keywords: Extreme; value; theory; Bivariate; slowly; varying; function; Bias; reduction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668711000175
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:49:y:2011:i:1:p:18-26

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:49:y:2011:i:1:p:18-26