EconPapers    
Economics at your fingertips  
 

On "optimal pension management in a stochastic framework" with exponential utility

Qing-Ping Ma

Insurance: Mathematics and Economics, 2011, vol. 49, issue 1, 61-69

Abstract: This paper reconsiders the optimal asset allocation problem in a stochastic framework for defined-contribution pension plans with exponential utility, which has been investigated by Battocchio and Menoncin [Battocchio, P., Menoncin, F., 2004. Optimal pension management in a stochastic framework. Insurance: Math. Econ. 34, 79-95]. When there are three types of asset, cash, bond and stock, and a non-hedgeable wage risk, the optimal pension portfolio composition is horizon dependent for pension plan members whose terminal utility is an exponential function of real wealth (nominal wealth-to-price index ratio). With market parameters usually assumed, wealth invested in bond and stock increases as retirement approaches, and wealth invested in cash asset decreases. The present study also shows that there are errors in the formulation of the wealth process and control variables in solving the optimization problem in the study of Battocchio and Menoncin, which render their solution erroneous and lead to wrong results in their numerical simulation.

Keywords: IB81; IM12; Defined-contribution; pension; plan; Wage; risk; Inflation; Optimal; asset; allocation; Exponential; utility; Hamilton-Jacobi-Bellman; equation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668711000254
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:49:y:2011:i:1:p:61-69

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:49:y:2011:i:1:p:61-69