A generalized beta copula with applications in modeling multivariate long-tailed data
Xipei Yang,
Edward W. Frees and
Zhengjun Zhang
Insurance: Mathematics and Economics, 2011, vol. 49, issue 2, 265-284
Abstract:
This work proposes a new copula class that we call the MGB2 copula. The new copula originates from extracting the dependence function of the multivariate GB2 distribution (MGB2) whose marginals follow the univariate generalized beta distribution of the second kind (GB2). The MGB2 copula can capture non-elliptical and asymmetric dependencies among marginal coordinates and provides a simple formulation for multi-dimensional applications. This new class features positive tail dependence in the upper tail and tail independence in the lower tail. Furthermore, it includes some well-known copula classes, such as the Gaussian copula, as special or limiting cases. To illustrate the usefulness of the MGB2 copula, we build a trivariate MGB2 copula model of bodily injury liability closed claims. Extended GB2 distributions are chosen to accommodate the right-skewness and the long-tailedness of the outcome variables. For the regression component, location parameters with continuous predictors are introduced using a nonlinear additive function. For comparison purposes, we also consider the Gumbel and t copulas, alternatives that capture the upper tail dependence. The paper introduces a conditional plot graphical tool for assessing the validation of the MGB2 copula. Quantitative and graphical assessment of the goodness of fit demonstrate the advantages of the MGB2 copula over the other copulas.
Keywords: Copulas; Non-elliptical; asymmetric; dependence; Tail; dependence; Long-tail; regression; Additive; model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668711000576
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:49:y:2011:i:2:p:265-284
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().