EconPapers    
Economics at your fingertips  
 

Sensitivity of risk measures with respect to the normal approximation of total claim distributions

Volker Krätschmer and Henryk Zähle

Insurance: Mathematics and Economics, 2011, vol. 49, issue 3, 335-344

Abstract: A simple and commonly used method to approximate the total claim distribution of a (possibly weakly dependent) insurance collective is the normal approximation. In this article, we investigate the error made when the normal approximation is plugged in a fairly general distribution-invariant risk measure. We focus on the rate of convergence of the error relative to the number of clients, we specify the relative error’s asymptotic distribution, and we illustrate our results by means of a numerical example. Regarding the risk measure, we take into account distortion risk measures as well as distribution-invariant coherent risk measures.

Keywords: Total claim distribution; φ- and α-mixing sequences of random variables; Normal approximation; Nonuniform Berry–Esseen inequality; Distortion risk measure; Coherent risk measure; Robust representation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016766871100062X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:49:y:2011:i:3:p:335-344

DOI: 10.1016/j.insmatheco.2011.05.004

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:335-344