EconPapers    
Economics at your fingertips  
 

A characterization of the multivariate excess wealth ordering

J.M. Fernández-Ponce, F. Pellerey and M.R. Rodríguez-Griñolo

Insurance: Mathematics and Economics, 2011, vol. 49, issue 3, 410-417

Abstract: In this paper, some new properties of the upper-corrected orthant of a random vector are proved. The univariate right-spread or excess wealth function, introduced by Fernández-Ponce et al. (1996), is extended to multivariate random vectors, and some properties of this multivariate function are studied. Later, this function was used to define the excess wealth ordering by Shaked and Shanthikumar (1998) and Fernández-Ponce et al. (1998). The multivariate excess wealth function enable us to define a new stochastic comparison which is weaker than the multivariate dispersion orderings. Also, some properties relating the multivariate excess wealth order with stochastic dependence are described.

Keywords: Excess wealth function; Expansion function; Multivariate dispersion ordering; Quantile; Upper-corrected orthant (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668711000783
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:49:y:2011:i:3:p:410-417

DOI: 10.1016/j.insmatheco.2011.07.001

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:410-417