Discrete-time local risk minimization of payment processes and applications to equity-linked life-insurance contracts
Jérôme Pansera
Insurance: Mathematics and Economics, 2012, vol. 50, issue 1, 1-11
Abstract:
We develop a theory of local risk minimization for payment processes in discrete time, and apply this theory to the pricing and hedging of equity-linked life-insurance contracts. Thus, we extend the work of Møller (2001a) in several directions: from risk minimization (which is done under a martingale measure) to local risk minimization (which is done under an arbitrary measure), from single claims to payment processes, from complete financial markets to possibly incomplete financial markets, from a single risky asset to several risky assets, and from finite state spaces to general state spaces.
Keywords: Local risk minimization; Locally risk-minimizing hedging strategy; Minimal martingale measure; Incomplete market; Enlargement of filtration; Equity-indexed annuity; Unit-linked life insurance (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668711001004
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:50:y:2012:i:1:p:1-11
DOI: 10.1016/j.insmatheco.2011.10.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().