A new class of models for heavy tailed distributions in finance and insurance risk
Soohan Ahn,
Joseph H.T. Kim and
Vaidyanathan Ramaswami
Insurance: Mathematics and Economics, 2012, vol. 51, issue 1, 43-52
Abstract:
Many insurance loss data are known to be heavy-tailed. In this article we study the class of Log phase-type (LogPH) distributions as a parametric alternative in fitting heavy tailed data. Transformed from the popular phase-type distribution class, the LogPH introduced by Ramaswami exhibits several advantages over other parametric alternatives. We analytically derive its tail related quantities including the conditional tail moments and the mean excess function, and also discuss its tail thickness in the context of extreme value theory. Because of its denseness proved herein, we argue that the LogPH can offer a rich class of heavy-tailed loss distributions without separate modeling for the tail side, which is the case for the generalized Pareto distribution (GPD). As a numerical example we use the well-known Danish fire data to calibrate the LogPH model and compare the result with that of the GPD. We also present fitting results for a set of insurance guarantee loss data.
Keywords: Generalized Pareto distribution; Log phase-type distribution; Heavy tail; Data fitting; Extreme value theory (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712000182
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:51:y:2012:i:1:p:43-52
DOI: 10.1016/j.insmatheco.2012.02.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().