Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?
Martin Eling
Insurance: Mathematics and Economics, 2012, vol. 51, issue 2, 239-248
Abstract:
This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration.
Keywords: Goodness of fit; Risk measurement; Skew-normal; Skew-student (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (49)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712000492
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:51:y:2012:i:2:p:239-248
DOI: 10.1016/j.insmatheco.2012.04.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().