Second-order properties of the Haezendonck–Goovaerts risk measure for extreme risks
Tiantian Mao and
Taizhong Hu
Insurance: Mathematics and Economics, 2012, vol. 51, issue 2, 333-343
Abstract:
The Haezendonck–Goovaerts risk measure is based on the premium calculation principle induced by an Orlicz norm, which is defined via an increasing and convex Young function and a parameter q∈(0,1) representing the confidence level. In this paper, we first reestablish the first-order expansions of the Haezendonck–Goovaerts risk measure for extreme risks with a power Young function in Tang and Yang (2012) in terms of the tail quantile function. Second, we are interested in the calculation of the second-order expansions of the Haezendonck–Goovaerts risk measure as q↑1. We only consider the case in which the risk variable belongs to the max-domain of attraction of an extreme value distribution.
Keywords: (Extended) regular variation; Extreme value theory; First-order expansion; Max-domain attraction; Second-order expansion; Second-order regular variation; Young function (search for similar items in EconPapers)
JEL-codes: G22 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712000704
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:51:y:2012:i:2:p:333-343
DOI: 10.1016/j.insmatheco.2012.06.003
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().