The optimal mean–variance investment strategy under value-at-risk constraints
Jun Ye and
Tiantian Li
Insurance: Mathematics and Economics, 2012, vol. 51, issue 2, 344-351
Abstract:
This paper is devoted to study the effects arising from imposing a value-at-risk (VaR) constraint in the mean–variance portfolio selection problem for an insurer who receives a stochastic cash flow which he must then invest in a continuous-time financial market. For simplicity, we assume that there is only one investment opportunity available for the insurer, a risky stock. Using techniques of stochastic linear–quadratic (LQ) control, the optimal mean–variance investment strategy with and without the VaR constraint is derived explicitly in closed forms, based on the solution of the corresponding Hamilton–Jacobi–Bellman (HJB) equation. Furthermore, a numerical example is proposed to show how the addition of the VaR constraint affects the optimal strategy.
Keywords: Value-at-risk; Mean–variance portfolio; Hamilton–Jacobi–Bellman equation; Optimal investment strategy (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712000650
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:51:y:2012:i:2:p:344-351
DOI: 10.1016/j.insmatheco.2012.05.004
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().