An adaptive premium policy with a Bayesian motivation in the classical risk model
David Landriault,
Christiane Lemieux and
Gordon E. Willmot
Insurance: Mathematics and Economics, 2012, vol. 51, issue 2, 370-378
Abstract:
In this paper, we consider an extension of the classical risk model in which the premium rate policy is adaptive to claim experience. We assume that the premium rate is reviewed each time the surplus reaches a new descending ladder height. A choice between a finite number m of rates is then made depending on the time elapsed between successive ladder heights. We derive explicit expressions for the probability of ruin in this model, assuming claim sizes have a mixed Erlang distribution. We then motivate further the idea behind this adaptive premium rate policy by using a mixed Poisson process for the claim arrival, and propose a method to fix the parameters of the policy in this setting. Finally, we discuss other applications of this method.
Keywords: Ruin probability; Mixed Erlang; Defective renewal equation; Laplace transform; Erlangization; Mixed Poisson; IM10; IM13; IM30 (search for similar items in EconPapers)
JEL-codes: C02 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712000686
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:51:y:2012:i:2:p:370-378
DOI: 10.1016/j.insmatheco.2012.06.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().