EconPapers    
Economics at your fingertips  
 

An operator splitting harmonic differential quadrature approach to solve Young’s model for life insurance risk

Luca Vincenzo Ballestra, Massimiliano Ottaviani and Graziella Pacelli ()

Insurance: Mathematics and Economics, 2012, vol. 51, issue 2, 442-448

Abstract: This paper is concerned with the numerical approximation of a mathematical model for life insurance risk that has been presented quite recently by Young (2007, 2008). In particular, such a model, which consists of a system of several non-linear partial differential equations, is solved using a new numerical method that combines an operator splitting procedure with the differential quadrature (DQ) finite difference scheme. This approach allows one to reduce the partial differential problems to systems of linear equations of very small dimension, so that pricing portfolios of many life insurances becomes a relatively easily task. Numerical experiments are presented showing that the method proposed is very accurate and fast. In addition, the limit behavior of portfolios of life insurances as the number of contracts tends to infinity is investigated. This analysis reveals that the prices of portfolios comprising more than five thousand policies can be accurately approximated by solving a linear partial differential equation derived in Young (2007, 2008).

Keywords: Young’s model; Life insurance; Harmonic differential quadrature (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712000790
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:51:y:2012:i:2:p:442-448

DOI: 10.1016/j.insmatheco.2012.06.012

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:insuma:v:51:y:2012:i:2:p:442-448