Skew mixture models for loss distributions: A Bayesian approach
Mauro Bernardi,
Antonello Maruotti and
Lea Petrella
Insurance: Mathematics and Economics, 2012, vol. 51, issue 3, 617-623
Abstract:
The derivation of loss distribution from insurance data is a very interesting research topic but at the same time not an easy task. To find an analytic solution to the loss distribution may be misleading although this approach is frequently adopted in the actuarial literature. Moreover, it is well recognized that the loss distribution is strongly skewed with heavy tails and presents small, medium and large size claims which hardly can be fitted by a single analytic and parametric distribution. Here we propose a finite mixture of Skew Normal distributions that provides a better characterization of insurance data. We adopt a Bayesian approach to estimate the model, providing the likelihood and the priors for the all unknown parameters; we implement an adaptive Markov Chain Monte Carlo algorithm to approximate the posterior distribution. We apply our approach to a well known Danish fire loss data and relevant risk measures, such as Value-at-Risk and Expected Shortfall probability, are evaluated as well.
Keywords: Markov chain Monte Carlo; Bayesian analysis; Mixture model; Skew-Normal distributions; Loss distribution; Danish data (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712001035
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Skew mixture models for loss distributions: a Bayesian approach (2012) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:51:y:2012:i:3:p:617-623
DOI: 10.1016/j.insmatheco.2012.08.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().