A characterization of optimal portfolios under the tail mean–variance criterion
Iqbal Owadally and
Zinoviy Landsman
Insurance: Mathematics and Economics, 2013, vol. 52, issue 2, 213-221
Abstract:
The tail mean–variance model was recently introduced for use in risk management and portfolio choice; it involves a criterion that focuses on the risk of rare but large losses, which is particularly important when losses have heavy-tailed distributions. If returns or losses follow a multivariate elliptical distribution, the use of risk measures that satisfy certain well-known properties is equivalent to risk management in the classical mean–variance framework. The tail mean–variance criterion does not satisfy these properties, however, and the precise optimal solution typically requires the use of numerical methods. We use a convex optimization method and a mean–variance characterization to find an explicit and easily implementable solution for the tail mean–variance model. When a risk-free asset is available, the optimal portfolio is altered in a way that differs from the classical mean–variance setting. A complete solution to the optimal portfolio in the presence of a risk-free asset is also provided.
Keywords: Tail conditional expectation; Tail variance; Optimal portfolio selection; Quartic equation (search for similar items in EconPapers)
JEL-codes: G11 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712001709
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:52:y:2013:i:2:p:213-221
DOI: 10.1016/j.insmatheco.2012.12.004
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().