Testing tail monotonicity by constrained copula estimation
Irène Gijbels and
Dominik Sznajder
Insurance: Mathematics and Economics, 2013, vol. 52, issue 2, 338-351
Abstract:
In this paper the interest is in testing for tail monotonicity dependence structures between two random variables. The main focus in the presentation of the statistical methodology is on left tail decreasingness, but the developed procedures can also be used for testing for other specific tail monotonicity dependence structures. In order to assess the p-values of the test statistic, we resample from a constrained copula estimator. This can be done in a nonparametric or in a parametric way. The main difficulty is the construction of a constrained estimator and the development of a resampling technique. The finite-sample performances of the proposed testing procedures are investigated in a simulation study and illustrations on real data examples are provided.
Keywords: Constrained copula estimation; Nonparametric copula estimation; Resampling; Tail monotonicity; Testing hypothesis (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713000103
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:52:y:2013:i:2:p:338-351
DOI: 10.1016/j.insmatheco.2013.01.006
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().