An optimal investment strategy with maximal risk aversion and its ruin probability in the presence of stochastic volatility on investments
Mohamed Badaoui and
Begoña Fernández
Insurance: Mathematics and Economics, 2013, vol. 53, issue 1, 1-13
Abstract:
In this paper, we study an optimal investment problem of an insurance company with a Cramér–Lundberg risk process and investments portfolio consisting of a risky asset with stochastic volatility and a money market. The asset prices are affected by a correlated economic factor, modeled as diffusion process. We prove a verification theorem, in order to show that any solution to the Hamilton–Jacobi–Bellman equation solves the optimization problem. When the insurer preferences are exponential, we prove the existence of a smooth solution, and we give an explicit form of the optimal strategy, also numerical results are presented in the case of the Scott model. Finally we use the optimal strategy to get an estimate of the ruin probability in finite horizon.
Keywords: Stochastic volatility model; Hamilton–Jacobi–Bellman equation; Utility function; Ruin probability (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713000589
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:53:y:2013:i:1:p:1-13
DOI: 10.1016/j.insmatheco.2013.04.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().