Credibility theory based on trimming
Joseph H.T. Kim and
Yongho Jeon
Insurance: Mathematics and Economics, 2013, vol. 53, issue 1, 36-47
Abstract:
The classical credibility theory proposed by Bühlmann has been widely used in general insurance applications. In this paper we propose a credibility theory via truncation of the loss data, or the trimmed mean. The proposed framework contains the classical credibility theory as a special case and is based on the idea of varying the trimming threshold level to investigate the sensitivity of the credibility premium. After showing that the trimmed mean is not a coherent risk measure, we investigate some related asymptotic properties of the structural parameters in credibility. Later a numerical illustration shows that the proposed credibility models can successfully capture the tail risk of the underlying loss model, thus providing a better landscape of the overall risk that insurers assume.
Keywords: Credibility; Trimmed mean; L-estimator; Risk measure (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713000541
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:53:y:2013:i:1:p:36-47
DOI: 10.1016/j.insmatheco.2013.03.012
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().