Optimal proportional reinsurance and investment under partial information
Xingchun Peng and
Yijun Hu
Insurance: Mathematics and Economics, 2013, vol. 53, issue 2, 416-428
Abstract:
In this paper, we study the optimal proportional reinsurance and investment strategy for an insurer that only has partial information at its disposal, under the criterion of maximizing the expected utility of the terminal wealth. We assume that the surplus of the insurer is governed by a jump diffusion process, and that reinsurance is used by the insurer to reduce risk. In addition, the insurer can invest in financial markets. We give a characterization for the optimal strategy within a non-Markovian setting. Malliavin calculus for Lévy processes is used for the analysis.
Keywords: Reinsurance; Portfolio; Partial information; Malliavin calculus (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713001042
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:53:y:2013:i:2:p:416-428
DOI: 10.1016/j.insmatheco.2013.07.004
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().