EconPapers    
Economics at your fingertips  
 

Optimal proportional reinsurance and investment under partial information

Xingchun Peng and Yijun Hu

Insurance: Mathematics and Economics, 2013, vol. 53, issue 2, 416-428

Abstract: In this paper, we study the optimal proportional reinsurance and investment strategy for an insurer that only has partial information at its disposal, under the criterion of maximizing the expected utility of the terminal wealth. We assume that the surplus of the insurer is governed by a jump diffusion process, and that reinsurance is used by the insurer to reduce risk. In addition, the insurer can invest in financial markets. We give a characterization for the optimal strategy within a non-Markovian setting. Malliavin calculus for Lévy processes is used for the analysis.

Keywords: Reinsurance; Portfolio; Partial information; Malliavin calculus (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713001042
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:53:y:2013:i:2:p:416-428

DOI: 10.1016/j.insmatheco.2013.07.004

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:53:y:2013:i:2:p:416-428