EconPapers    
Economics at your fingertips  
 

Determination of the probability of ultimate ruin by maximum entropy applied to fractional moments

Henryk Gzyl (), Pier-Luigi Novi-Inverardi and Aldo Tagliani

Insurance: Mathematics and Economics, 2013, vol. 53, issue 2, 457-463

Abstract: In this work we present two different numerical methods to determine the probability of ultimate ruin as a function of the initial surplus. Both methods use moments obtained from the Pollaczek–Kinchine identity for the Laplace transform of the probability of ultimate ruin. One method uses fractional moments combined with the maximum entropy method and the other is a probabilistic approach that uses integer moments directly to approximate the density.

Keywords: Ruin problems; Laplace transform; Moments; Maximum entropy method (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016766871300111X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:53:y:2013:i:2:p:457-463

DOI: 10.1016/j.insmatheco.2013.07.011

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:53:y:2013:i:2:p:457-463