Survival probabilities in bivariate risk models, with application to reinsurance
Anna Castañer,
M.M. Claramunt and
C. Lefèvre
Insurance: Mathematics and Economics, 2013, vol. 53, issue 3, 632-642
Abstract:
This paper deals with an insurance portfolio that covers two interdependent risks. The central model is a discrete-time bivariate risk process with independent claim increments. A continuous-time version of compound Poisson type is also examined. Our main purpose is to develop a numerical method for determining non-ruin probabilities over a finite-time horizon. The approach relies on, and exploits, the existence of a special algebraic structure of Appell type. Some applications in reinsurance to the joint risks of the cedent and the reinsurer are presented and discussed, under a stop-loss or excess of loss contract.
Keywords: Multirisks model; Discrete or continuous time; Finite-time ruin probability; Appell algebraic structure; Recursive methods; Stop-loss and excess of loss reinsurance (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713001340
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:53:y:2013:i:3:p:632-642
DOI: 10.1016/j.insmatheco.2013.09.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().