Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates
Giovanni Puccetti,
Bin Wang and
Ruodu Wang
Insurance: Mathematics and Economics, 2013, vol. 53, issue 3, 821-828
Abstract:
We give a new sufficient condition for a continuous distribution to be completely mixable, and we use this condition to show that the worst-possible value-at-risk for the sum of d inhomogeneous risks is equivalent to the worst-possible expected shortfall under the same marginal assumptions, in the limit as d→∞. Numerical applications show that this equivalence holds also for relatively small dimensions d.
Keywords: Complete mixability; Worst-dependence scenarios; Value-at-Risk; Expected Shortfall; Basel III (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713001509
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:53:y:2013:i:3:p:821-828
DOI: 10.1016/j.insmatheco.2013.09.017
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().