GlueVaR risk measures in capital allocation applications
Jaume Belles-Sampera,
Montserrat Guillen and
Miguel Santolino
Insurance: Mathematics and Economics, 2014, vol. 58, issue C, 132-137
Abstract:
GlueVaR risk measures defined by Belles-Sampera et al. (2014) generalize the traditional quantile-based approach to risk measurement, while a subfamily of these risk measures has been shown to satisfy the tail-subadditivity property. In this paper we show how GlueVaR risk measures can be implemented to solve problems of proportional capital allocation. In addition, the classical capital allocation framework suggested by Dhaene et al. (2012) is generalized to allow the application of the Value-at-Risk (VaR) measure in combination with a stand-alone proportional allocation criterion (i.e., to accommodate the Haircut allocation principle). Two new proportional capital allocation principles based on GlueVaR risk measures are defined. An example based on insurance claims data is presented, in which allocation solutions with tail-subadditive risk measures are discussed.
Keywords: Subadditivity; Tails; Distortion risk measure; Capital allocation; Risk aversion (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714000869
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:58:y:2014:i:c:p:132-137
DOI: 10.1016/j.insmatheco.2014.06.014
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().