Optimal portfolio choice for an insurer with loss aversion
Wenjing Guo
Insurance: Mathematics and Economics, 2014, vol. 58, issue C, 217-222
Abstract:
The problem of optimal investment for an insurance company attracts more attention in recent years. In general, the investment decision maker of the insurance company is assumed to be rational and risk averse. This is inconsistent with non fully rational decision-making way in the real world. In this paper we investigate an optimal portfolio selection problem for the insurer. The investment decision maker is assumed to be loss averse. The surplus process of the insurer is modeled by a Lévy process. The insurer aims to maximize the expected utility when terminal wealth exceeds his aspiration level. With the help of martingale method, we translate the dynamic maximization problem into an equivalent static optimization problem. By solving the static optimization problem, we derive explicit expressions of the optimal portfolio and the optimal wealth process.
Keywords: Portfolio choice; Insurance company; Behavioral finance; Loss aversion; Martingale method (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714000900
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:58:y:2014:i:c:p:217-222
DOI: 10.1016/j.insmatheco.2014.07.004
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().