Quantifying the risk using copulae with nonparametric marginals
Catalina Bolancé,
Zuhair Bahraoui and
Manuel Artís
Insurance: Mathematics and Economics, 2014, vol. 58, issue C, 46-56
Abstract:
We show that copulae and kernel estimation can be mixed to estimate the risk of an economic loss. We analyze the properties of the Sarmanov copula. We find that the maximum pseudo-likelihood estimation of the dependence parameter associated with the copula with double transformed kernel estimation to estimate marginal cumulative distribution functions is a useful method for approximating the risk of extreme dependent losses when we have large data sets. We use a bivariate sample of losses from a real database of auto insurance claims.
Keywords: Extreme value copula; Tail dependence; Sarmanov copula; Nonparametric marginals; Value-at-risk (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714000705
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:58:y:2014:i:c:p:46-56
DOI: 10.1016/j.insmatheco.2014.06.008
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().