Optimal investment, consumption and proportional reinsurance under model uncertainty
Xingchun Peng,
Fenge Chen and
Yijun Hu
Insurance: Mathematics and Economics, 2014, vol. 59, issue C, 222-234
Abstract:
This paper considers the optimal investment, consumption and proportional reinsurance strategies for an insurer under model uncertainty. The surplus process of the insurer before investment and consumption is assumed to be a general jump–diffusion process. The financial market consists of one risk-free asset and one risky asset whose price process is also a general jump–diffusion process. We transform the problem equivalently into a two-person zero-sum forward–backward stochastic differential game driven by two-dimensional Lévy noises. The maximum principles for a general form of this game are established to solve our problem. Some special interesting cases are studied by using Malliavin calculus so as to give explicit expressions of the optimal strategies.
Keywords: Investment; Consumption; Reinsurance; Model uncertainty; Stochastic maximum principle; Malliavin calculus (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714001280
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:59:y:2014:i:c:p:222-234
DOI: 10.1016/j.insmatheco.2014.09.013
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().