EconPapers    
Economics at your fingertips  
 

On the distribution of sums of random variables with copula-induced dependence

Irène Gijbels and Klaus Herrmann

Insurance: Mathematics and Economics, 2014, vol. 59, issue C, 27-44

Abstract: We investigate distributional properties of the sum of d possibly unbounded random variables. The joint distribution of the random vector is formulated by means of an absolutely continuous copula, allowing for a variety of different dependence structures between the summands. The obtained expression for the distribution of the sum features a separation property into marginal and dependence structure contributions typical for copula approaches. Along the same lines we obtain the formulation of a conditional expectation closely related to the expected shortfall common in actuarial and financial literature. We further exploit the separation to introduce new numerical algorithms to compute the distribution and quantile function, as well as this conditional expectation. A comparison with the most common competitors shows that the discussed Path Integration algorithm is the most suitable method for computing these quantities. In our example, we apply the theory to compute Value-at-Risk forecasts for a trivariate portfolio of index returns.

Keywords: (G)AEP algorithm; Aggregation of risk; Copula; Dependence; Expected shortfall; Path integration; Sums of random variables; Value-at-risk (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714000961
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:59:y:2014:i:c:p:27-44

DOI: 10.1016/j.insmatheco.2014.08.002

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:27-44