Efficient approximations for numbers of survivors in the Lee–Carter model
Samuel Gbari and
Michel Denuit
Insurance: Mathematics and Economics, 2014, vol. 59, issue C, 71-77
Abstract:
In portfolios of life annuity contracts, the payments made by an annuity provider (an insurance company or a pension fund) are driven by the random number of survivors. This paper aims to provide accurate approximations for the present value of the payments made by the annuity provider. These approximations account not only for systematic longevity risk but also for the diversifiable fluctuations around the unknown life table. They provide the practitioner with a useful tool avoiding the problem of simulations within simulations in, for instance, Solvency 2 calculations, valid whatever the size of the portfolio.
Keywords: Life annuity; Mortality projection; Lee–Carter model; Comonotonicity; Supermodular order; Increasing directionally convex order; Risk measures (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714001012
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:59:y:2014:i:c:p:71-77
DOI: 10.1016/j.insmatheco.2014.08.007
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().