EconPapers    
Economics at your fingertips  
 

Occupation times in the MAP risk model

David Landriault and Tianxiang Shi

Insurance: Mathematics and Economics, 2015, vol. 60, issue C, 75-82

Abstract: Occupation times have so far been primarily analyzed in the class of Lévy processes, most notably some of its special cases, by capitalizing on the stationary and independence property of the process increments. In this paper, we relax this assumption and provide a closed-form expression for the Laplace transform of occupation times for surplus processes governed by a Markovian claim arrival process. This will naturally allow us to revisit some occupation time results for the compound Poisson risk model. We also identify the density of the total duration of negative surplus and its individual contributions when the number of claims occurring with negative surplus levels is jointly studied. Finally, a numerical example in an Erlang-2 renewal risk process is also considered.

Keywords: Occupation time; Duration of negative surplus; Markovian arrival process; Time to ruin; Number of claims with negative surplus (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714001413
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:60:y:2015:i:c:p:75-82

DOI: 10.1016/j.insmatheco.2014.10.014

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:60:y:2015:i:c:p:75-82