Tail negative dependence and its applications for aggregate loss modeling
Lei Hua
Insurance: Mathematics and Economics, 2015, vol. 61, issue C, 135-145
Abstract:
Tail order of copulas can be used to describe the strength of dependence in the tails of a joint distribution. When the value of tail order is larger than the dimension, it may lead to tail negative dependence. First, we prove results on conditions that lead to tail negative dependence for Archimedean copulas. Using the conditions, we construct new parametric copula families that possess upper tail negative dependence. Among them, a copula based on a scale mixture with a generalized gamma random variable (GGS copula) is useful for modeling asymmetric tail negative dependence. We propose mixed copula regression based on the GGS copula for aggregate loss modeling of a medical expenditure panel survey dataset. For this dataset, we find that there exists upper tail negative dependence between loss frequency and loss severity, and the introduction of tail negative dependence structures significantly improves the aggregate loss modeling.
Keywords: Tail order; Scale mixture; Loss frequency; Loss severity; MEPS data; Archimedean copula; GGS copula (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715000025
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:61:y:2015:i:c:p:135-145
DOI: 10.1016/j.insmatheco.2015.01.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().